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In the present paper, we propose a modeling methodology based
on stacked neural networks by combining several individual net-
works in parallel, whose outputs are weighted to provide the output
of the stack. Also, a procedure was included for finding the optimal
set of weights that leads to the best performance of modeling, on
both training and validation data. As a case study, we consider
the photocatalytic oxidation of triclopyr where the final concen-
tration was evaluated depending on the reaction conditions,
irradiation time and amounts of reactants. We show that the per-
formance of the stack is better than those of individual networks,
especially for the validation phase.

Keywords decomposition; modeling; neural network; photo-
catalysis; triclopyr

INTRODUCTION

Pesticides and agrochemical compounds in general have
been detected in water since the 1950s. The United Nations
estimates that less than 1% of all pesticides used in agricul-
ture actually reach the crops. The remainder ends up
contaminating the land, the air, and particularly the water
(1–3). As these contaminants in many cases are toxic and
non-biodegradable, they tend to accumulate in the environ-
ment with unpredictable consequences for the mid-term
future (4). An ideal treatment method for pesticide wastes
would be a non-selective one that could achieve rapid
and complete degradation to inorganic products and could
be suitable for small-scale wastes (5).

Possible advanced treatment methods that are used at
the present time include advanced chemical oxidation,

adsorption on granulated active carbon, incineration, etc.
Among the so-called Advanced Oxidation Processes
(AOP), solar photocatalytic methods like heterogeneous
photocatalysis (TiO2=UV-A) or photo-Fenton reagent
(Fe3þ=H2O2=UV-A,Vis) have proven to be effective for a
variety of chemicals (pesticides, dyes, etc.) and different
types of wastewater (industrial, municipal, etc.) (5–7). A
variety of toxic agrochemical substances, such as insecti-
cides and pesticides, have also been studied with regard
to their photocatalytic degradation, in the presence of arti-
ficial or solar illumination, with very encouraging results,
while studies dealing with real or simulated wastewater
have revealed that their complete or partial degradation
is possible via the above-mentioned methods (5,8–11).

The phenomenological treatment of such photochemical
systems is very complex. In general, the rate of reaction in
heterogeneous photocatalytic systems is a complex non-
linear function of catalyst loading, light intensity, initial
solution pH, reactant, and oxidants concentration, etc.
Due to these reasons, the ability of systems such as artificial
neural networks (ANN) to recognize and reproduce cause–
effect relationships through training, for multiple input–
output mappings, has gained popularity in various areas
of chemical engineering, and also in the field of photocata-
lytic treatment of wastewater (12–17).

Artificial neural networks (ANN) represent promising
alternative tools for classical process modeling. The role
of an artificial neural network is to discover the relation-
ships that link patterns of input data to the associated out-
put data. Numerous types of problems in science can be
cast in the form of a pattern-matching problem, and arti-
ficial neural networks are among the most effective meth-
ods within machine learning for revealing these links.
Once trained, artificial neural networks are fast in oper-
ation and are particularly valuable in circumstances where
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the volume of available raw data is large, but not enough is
known about the relationships within the data to allow the
scientist to build an analytical model (18).

Among the existing numerous neural networks para-
digms, the feed-forward neural networks are the most
popular due to their flexibility in structure, good represen-
tational capabilities, and large number of available training
algorithms (19). In general, there is no certainty that any
individual model can extract all relevant information from
the data set. The idea of combining neural network models
is based on the premise that different neural networks can
capture different aspects of process behavior and aggregat-
ing this information should reduce uncertainty and provide
more accurate predictions. It is always possible that a
stacked network could outperform a single-best trained
network for the following reasons:

1. Optimal network architecture cannot always be
guaranteed.

2. The optimization of network parameters is a problem
with many local minima. Even for a given architecture,
final network parameters can differ between one run of
the algorithm and another.

3. Different activation functions and learning algorithms
can also lead to different generalization characteristics,
and no one activation function or learning algorithm
is the best in all cases.

4. Convergence criteria used for network training can lead
to very different solutions for a given network architec-
ture (20).

Stacked neural networks designed to improve predic-
tive modeling, have been increasingly used in the chemical
processes, especially for dealing with some complex non-
linear processes where the understanding of the phenom-
ena is limited. Some examples are presented in references
(20–24).

Our paper presents a neural networks modeling
methodology applied to the heterogeneous photocatalytic
decomposition of triclopyr in the presence of TiO2 as photo-
catalyst and is based on our experimental data obtained ear-
lier (25). The heterogeneous photocatalytic oxidation of
organic pollutants in the presence of TiO2 as catalyst, under
artificial or solar irradiation, is a well known methodology,
the description of which is presented in several excellent
review articles (5,26,27). Therefore, in this paper, the vari-
ous stages of the photocatalytic process will not be further
presented.

This methodology includes simple and stacked feed-
forward neural networks and a technique of optimizing
the weights of the stack to obtain the best performance of
the neural models. The developed models, especially
stacked neural networks, accurately predict the final con-
centration of triclopyr as a function of reaction conditions.

NEURAL NETWORK MODELING

Individual Neural Networks

A good process model—accurate model with a short
simulation time—is a prerequisite for application in the
optimal control strategy. A phenomenological model of a
chemical process is difficult to obtain, especially when lim-
ited knowledge about the process is available. Neural net-
works could overcome these difficulties because they have
a series of advantages, such as the possibility to be applied
to complex nonlinear processes, the ease in using neural
models, the possibility of substituting experiments with
predictions. Neural models need only input-output data
(experimental data), so their advantages are evident against
the complexity of the computations.

The most common neural network architecture is the
multi-layer feed-forward neural network (often called
multi-layer perceptron, MLP) which has a layered struc-
ture, consisting of input, hidden, and output layers. The
number of neurons in input and output layers corresponds
to the independent and dependent variables in the model-
ing and hidden neurons will be established within the best
topologies of the neural networks.

The neural network modeling implies several stages—
collecting the training data by experiments, choosing train-
ing and testing data sets, developing the neural network
topology, training, and, finally, establishing the perfor-
mance of the model by evaluating the network predictions
for new, unseen data.

For our case study, the photocatalytic degradation of
triclopyr, we follow the final concentration of this com-
pound as a function of process conditions. The neural
models consider the irradiation time (t), the initial concen-
tration of triclopyr (C0), the concentration of TiO2 used as
a catalyst (CTiO2

), and the concentration of H2O2 (CH2O2
) as

inputs, and the final concentration of triclopyr (C) as the
output.

First, the data (368 in total) were split into training and
validation data sets, about 15% being the test data set used
to evaluate the performance of the neural network to data
not being used in the training process. In this way, we can
evaluate the most important feature of a neural model—the
generalization capability.

The number of hidden layers and units was established
by training a different range of networks and selecting
the one that best balanced generalization performance
against network size. The best network topology was
determined based on the mean of squared errors (MSE)
of the training data. Hidden neurons, as well as the output
layer neuron, use hyperbolic tangent as the nonlinear acti-
vation function. The network was trained using the
well-known back-propagation algorithm. We consider that
training ends when the network error (MSE) on the testing
set becomes sufficiently small and does not increase.
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Table 1 contains a series of MLP with one or two hidden
layers trained with experimental data, and their perfor-
mances registered in the training stage: MSE, r (the corre-
lation between experimental data and the output of the
neural network) and Ep (percent error). Only several exam-
ples are presented in Table 1 from many neural networks
trained on a different number of epochs (different training
time). Taking into account their performance, three neural
networks were selected—MLP(4:15:1), MLP(4:25:20:1),
and MLP(4:30:25:1).

Stacked Neural Networks

Generally, stacked neural networks provide more
accurate results than individual neural networks. In this
paper, we compare the predictions of individual and
stacked neural networks, especially in the validation phase,
in order to select a neural model with a high generalization
capability.

For our stack model, we considered the three neural
networkspreviously selected,MLP(4:15:1),MLP(4:25:20:1),
and MLP(4:30:25:1), based on their good performances
obtained in the training and validation phases. The method
used to combine the parallel models was the weighted
summation of the individual outputs. Consequently, the
performance of the stack is influenced by the aggregated
individual models and their corresponding weights.
Figure 1 presents the stacked neural networks for our
case study.

RESULTS AND DISCUSSION

Individual and stacked neural networks were applied to
the training and validation data sets in order to compare
their performance and, finally, to choose the most appro-
priate model for the studied process. Figures 2 and 3
present some examples of predictions performed with indi-
vidual networks on training and validation phases.

The performance of individual networks can be
improved by stacking them (17,24). Different stacks were
developed with the three networks, MLP(4:15:1),
MLP(4:25:20:1), and MLP(4:30:25:1), denoted by N1, N2,
and N3, respectively, the weight of each being changed.
In order to find the optimal weights, the first step was to
systematically generate weights between 0% and 100% with
a step of 10%, and record the average relative error and
correlation on training and validation data sets. Several
selected results are presented in Table 2. The first three
rows of this table show the performance of the individual
networks which compose the stack. Relative errors were
calculated using the following formula:

Er% ¼ Cexp � Cnet

Cexp
� 100 ð1Þ

where C represents the concentration of triclopyr, and
indexes exp and net denote experimental and network values.

Table 2 refers to the first case approached in the paper
and corresponds to the three of the best neural networks
aggregated in a stack.

TABLE 1
Different neural networks developed with

experimental data

Network type MSE r Ep %

MLP(4:5:1) 0.0012 0.988230 19.2430
MLP(4:10:1) 0.0004 0.998497 13.1822
MLP(4:15:1) 0.000354 0.998669 9.9729
MLP(4:20:1) 0.000375 0.99859 13.5923
MLP(4:12:4:1) 0.000756 0.997156 17.9502
MLP(4:24:8:1) 0.00058 0.997816 11.6835
MLP(4:25:20:1) 0.000079 0.999702 3.8722
MLP(4:30:25:1) 0.000106 0.999599 5.5637
MLP(4:42:14:1) 0.00047 0.998232 10.6775

FIG. 1. Stacked neural networks developed for the modeling of photo-

catalytic degradation of triclopyr.

FIG. 2. Predictions of MLP(4:15:1) on training data compared with

experimental data for the variation in time of final concentration of

triclopyr using different concentration of TiO2.
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One can see smaller errors and better correlations for the
stacked neural networks than for individual networks.

In order to find the optimal stacked neural network,
separate neural networks were developed for interpolation.
One network was prepared for the interpolation of the
training results and another one for the validation results.
They had two inputs, the weights for N1 and N2 and the
correlation, r, as the output. Only two inputs are necessary
because the third weight w3¼ 100�w1�w2. The signifi-
cance of w1, w2, and w3 can be seen in Fig. 1. While these
networks were admitted to be large enough, several var-
iants were tried: MLP(2:24:8:1) and MLP(2:21:7:1), for
training and validation, respectively, because the inter-
polation capacity here is more important than the general-
ization capability. The predictions of these models were
generated with a step of 1% and the maximum correlation
of 0.999045 was obtained with the following contributions
of the individual networks N1, N2, and N3: w1¼ 15%,
w2¼ 52%, and w3¼ 33%, respectively. Figure 4 shows the
variation of the stack performance with the weights of

FIG. 3. Predictions of MLP(4:25:20:1) on validation data (C_net) com-

pared with experimental data (C_exp) for the variation in time of final

concentration of triclopyr using different concentration of TiO2.

TABLE 2
Performance of the individual neural networks compared to different types of stacks (case 1)

Weights, % Training Validation

w1 w2 w3

Average relative
error, % Correlation

Average relative
error, % Correlation

100 0 0 11.5402 0.9989 8.3935 0.9954
0 100 0 4.1128 0.9997 6.3715 0.9979
0 0 100 5.5549 0.9995 6.0048 0.9976
0 10 90 3.9941 0.9999 5.2152 0.9989

20 10 70 4.9967 0.9998 4.9750 0.9989
90 10 0 12.0758 0.9991 7.8239 0.9989
20 20 60 4.8894 0.9998 4.7159 0.9989
30 20 50 5.6712 0.9998 4.8335 0.9988
20 30 50 4.8472 0.9998 4.4543 0.9990
30 30 40 5.6193 0.9998 4.6618 0.9989
20 40 40 4.7986 0.9999 4.2697 0.9990
30 40 30 5.5782 0.9998 4.6176 0.9989
40 40 20 6.9750 0.9997 5.0794 0.9987
0 50 50 3.5931 0.9999 4.2809 0.9990

10 50 40 4.0535 0.9999 4.0997 0.9990
20 50 30 4.7449 0.9999 4.2730 0.9990
30 60 10 6.0830 0.9998 4.5913 0.9989
40 60 0 6.9385 0.9998 5.0615 0.9987
20 70 10 4.6821 0.9999 4.3546 0.9990
30 70 0 6.0519 0.9998 4.6191 0.9989
50 0 50 8.1606 0.9996 5.7264 0.9981
60 0 40 9.1060 0.9995 6.1099 0.9978
80 0 20 11.0887 0.9992 7.2274 0.9968
90 0 10 12.1083 0.9991 7.7848 0.9961
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the component neural networks, for the validation stage
in case 1.

Because of the interpolation errors, the above result (the
maximum) is not precise. Additional experiments were per-
formed in the neighborhood of the potential maximum in
order to improve the solution. The value 0.999048 for cor-
relation corresponds to a stack with 12%, 50%, and 38%
(stack 1).

In another trial, three neural networks with one single
layer (the simplest networks with acceptable perfor-
mances), MLP(4:5:1), MLP(4:10:1), and MLP(4:15:1)
were considered for the stack. The entire procedure
described above was repeated to obtain the weights of
the individual networks in the stack which leads to the
best correlation in the validation phase. Table 3 presents
comparatively some of the results provided by individual
and stacked neural networks. Here, N1, N2, and N3 refer
to the neural networks with one hidden layer and 5, 10,
and 15 hidden neurons, respectively, and w1, w2, and w3

are the contributions of the networks to the stack
output.

An optimization procedure based on a separate neural
network for all training and validation results,
MLP(2:15:5:1), with the weights as inputs and the corre-
lation as the output, gives the weights 9%, 55%, and 36%
with a correlation of 0.996071. Figure 5 presents the vari-
ation of the correlation values with the weights of the
stack, emphasizing the optimum (maximum). Additional
simulations around this optimum point found a correlation
of 0.996087 for the following weights: 11%, 53%, and 36%
(stack 2).

Certainly, the results of the stacks are better than those
of the individual models as it can be seen in Tables 2 and 3.
Both stacks, with optimum values for the weights, were
tested with validation experimental data; a part of these
results are presented in Table 4. It is evident that the results

FIG. 4. The variation of the stack performance in the validation stage

with the weights of the component neural networks for stack 1.

TABLE 3
Performance of the individual neural networks compared to different types of stacks (case 2)

Weights, % Training Validation

w1 w2 w3

Average relative
error, % Correlation

Average relative
error, % Correlation

100 0 0 17.4134 0.9979 14.9485 0.9925
0 100 0 12.7506 0.9986 9.7000 0.9948
0 0 100 11.5402 0.9989 8.3935 0.9954

30 10 60 12.2974 0.9988 8.7145 0.9958
10 20 70 11.8047 0.9989 7.6877 0.9959
20 20 60 11.9118 0.9989 8.0733 0.9959
10 30 60 11.6393 0.9989 7.5663 0.9960
30 30 40 11.9454 0.9988 8.7902 0.9959
40 30 30 21.0089 0.9987 9.6016 0.9957
10 40 50 11.5215 0.9989 7.6186 0.9961
20 40 40 11.6410 0.9988 8.2003 0.9960
30 40 30 11.8988 0.9988 8.8925 0.9959
40 40 20 12.4304 0.9987 9.7276 0.9957
20 50 30 11.5937 0.9988 8.4065 0.9960
10 60 30 11.4386 0.9988 8.2020 0.9961
20 60 20 11.6012 0.9988 8.6493 0.9960
10 70 20 11.4941 0.9988 8.6330 0.9960
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of the two stacks are similar. Consequently, the simpler
stack, with only one hidden layer, can be chosen to model
the decomposition process of triclopyr.

CONCLUSIONS

In this paper, we compare the predictions of individual
and stacked neural networks, especially in the validation
phase, in order to select a neural model with a high general-
ization capability. The procedure is applied to the photoca-
talytic decomposition of triclopyr and the process is
evaluated by the final concentration of triclopyr as a func-
tion of the reaction conditions—initial concentration, time,
pH, and catalyst concentration.

The stack was constructed from three feed-forward
neural networks with one or two hidden layers whose out-
puts were weighted. Different stacks were developed by
changing the component networks and the weights with
which each individual network contributes to the total
(stack) output. An optimization method based on an
interpolation neural network with individual neural net-
work weights as inputs and the correlation between experi-
mental and predicted data as the output leads to the finding
of the decision surface of the values for the three weights,
and to the discovery of the optimum set of weights.

The results of the stacks were better than those of the
individual models. Good predictions were obtained in
the validation phase, so these models give a very good

FIG. 5. The variation of the stack performance in the validation phase

with the weights of the component neural networks for stack 2.

TABLE 4
Results obtained with the two stacks in the validation phase

Reaction conditions
(input parameters)

Output parameter

Stack 1
12%, 50%, 38%

Stack 2
11%, 53%, 36%

Time C0 TiO2 H2O2 C exp C_net Error, % C_net Error, %

11 10 0.1 0 3.47 3.577 2.974367 3.577 2.974367
19 10 0.1 0 1.15 1.157 0.076864 1.158 0.0095
16 10 0.25 0 1.54 1.581 2.568428 1.580 2.503552
19 10 0.5 0 0.52 0.502 4.620038 0.500 5.000038
6 10 1 0 3.57 3.738 4.444041 3.735 4.360217

15 10 1 0 0.63 0.654 3.549991 0.656 3.866658
6 10 2 2 2.44 2.440 0.181637 2.441 0.140728
4 10 2 10 3.40 3.516 3.211716 3.525 3.47591
8 10 2 15 1.04 1.108 5.813032 1.103 5.335536
9 10 2 50 0.65 0.607 7.938381 0.609 7.635048
7 10 2 100 1.01 0.887 12.4089 0.885 12.6064

14 10 2 100 0.63 0.545 13.88995 0.539 14.83795
3 10 2 150 5.07 5.031 0.794277 5.033 0.754839

18 15 2 0 0.72 0.766 5.385821 0.766 5.385821
4 5 2 0 1.67 1.633 2.514447 1.633 2.514447

17 7.5 2 0 0.10 0.106 2.203196 0.109 0.564638
5 15 2 0 6.48 6.501 0.270999 6.502 0.286422

28 15 2 0 0.14 0.166 14.93935 0.167 15.63175
6 10 3 0 2.94 3.172 7.621371 3.171 7.587442

18 10 3 0 0.31 0.320 1.333485 0.320 1.333485
Average Error 4.139456 4.101125
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representation of the photocatalytic oxidation of triclopyr,
and they could be capable of providing useful information
for experimental practice.

ACKNOWLEDGEMENTS

This work was completed with the financial support pro-
vided by the RomanianMinistry of Education andResearch
through the National Program for Research, Development
and Innovation II, grant 316=2008, contract no. 671=2009.

REFERENCES

1. Readman, J.W.; Albanis, T.; Barcelo, D.; Galassi, S.; Tronczynski, J.;

Gabrielides, G. (1993) Herbicide contamination of Mediterranean

estuarine waters: Results from a MED POL pilot survey. Marine

Pollution Bulletin, 26: 613–619.

2. Kopling, D.W.; Thurman, E.M.; Goosby, D.A. (1996) Occurrence of

selected pesticides and their metabolites in near-surface aquifers of the

Midwestern United States. Environ. Sci. Technol., 30: 335–340.

3. Meyer, M.T.; Thurman, E.M. (1996) Herbicide Metabolites in Surface

Water and Ground Water. ACS Symposium Series 630, American

Chemical Society, Washington, DC.

4. Hayo, M.G. (1996) Assessing the impact of pesticides on the environ-

ment. Agric. Ecosyst. Environ., 60: 81–96.

5. Blanco, J.; Malato, S. (2001) Solar Detoxification. UNESCO, Natural

Sciences, World Solar Programme 1996–2005 [chapter 2], (http://

www.unesco.org/science/wsp).

6. Robertson, P.J.; Bahnemann, D.W.; Robertson, J.M.C. (2005) Hand-

book of Environmental Chemistry, Vol. 2, Part M; Springer-Verlag:

Berlin Heidelberg, 367–423.

7. Blake, D. (2001) Bibliographic Work on the Heterogeneous Photoca-

talytic Removal of Hazardous Compounds from Water and Air,

National Renewable Energy Laboratory, Technical Report, NREL=

TP-510-31319.

8. Konstantinou, I.K.; Albanis, T.A. (2003) Photocatalytic transfor-

mation of pesticides in aqueous titanium dioxide suspensions using

artificial and solar light: intermediates and degradation pathways.

Appl. Catal. B, 42: 319–335.

9. Ishiki, R.R.; Ishiki, H.M.; Takashima, K. (2005) Photocatalytic

degradation of imazethapyr herbicide at TiO2=H2O interface. Chemo-

sphere, 58: 1461–1469.

10. Huston, P.L.; Pignatello, J.J. (1999) Degradation of selected pesticide

active ingredients and commercial formulations in water by the

photo-assisted Fenton reaction. Water Res., 33: 1238–1246.

11. Toepfer, B.; Gora, A.; Li Puma, G. (2006) Photocatalytic oxidation of

multicomponent solutions of herbicides: Reaction kinetics analysis

with explicit photon absorption effects. Appl. Catal. B, 68: 171–180.

12. Salari, D.; Daneshvar, N.; Aghazadeh, F.; Khataee, A.R. (2005)

Application of artificial neural networks for modeling of the treatment

of wastewater contaminated with methyl tert-butyl ether (MTBE) by

UV=H2O2 process. J. Hazard. Mat., B125: 205–210.

13. Guimaraes, O.L.C.; Silva, M.B. (2007) Hybrid neural model for deco-

loration by UV=H2O2 involving process variables and structural

parameters characteristics to azo dyes. Chem. Eng. Proc., 46: 45–51.

14. Duran, A.; Monteagudo, J.M.; Mohedano, M. (2006) Neura networks

simulation of photo-Fenton degradation of Reactive Blue 4. Appl.

Catal. B: Environmental, 65: 127–134.

15. Suditu, G.D.; Secula, M.; Piuleac, C.G.; Curteanu, S.; Poulios, I.

(2008) Genetic algorithms and neural networks based optimization

applied to the wastewater decolorization by photocatalytic reaction.

Rev. Chim., 59: 816–825.

16. Caliman, F.A.; Curteanu, S.; Betianu, C.; Gavrilescu, M.; Poulios, I.

(2008) Neural networks and genetic algorithms optimization of the

photocatalytic degradation of alcian blue 8gx. J. Advanced Oxidation

Technologies (ACS), 11: 316–326.

17. Piuleac, C.G.; Rodrigo, M.; Cañizares, P.; Curteanu, S.; Sáez, C.
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